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Abstract. The filtering problem for a partially observable stochastic system,

with linear in observable states dynamics and non-Gaussian initial conditions

is studied here. It is shown that the conditional expected value of the

unobservable states, given the past observations, can be expressed in terms of

a finite dimensional set of statistics. This result, which generalizes the

conditionally Gaussian filter is used to derive a separation principle for a

linear-quadratic control problem. .,

Key Words. Optimal filtering, stochastic control, non-Gaussian stochastic

-* systems.

..
4.

*Sponsored by ONR Contract No. N00014-81-K0814
1Department of Electrical and Computer Engineering, Oregon State University,
Corvallis, OR 97331.

2 During 1983-84, NAVALEX Professor, Department of Electrical and Computer
Eigineering, Naval Postgraduate School, %'bnterey, CA 93943

N.W.

V.;_%'

'S °'' ' ' ' '" *" " " ' "" ' " 
• ' ' ' '

'' ' " " " " ' ' '



2

Introduction

Stochastic, partially observable systems, with linear-in-observable state

dynamics are termed conditionally linear systems here. It is well known that

the solution of a state estimation problem for a conditionally linear system

with Gaussian distribution of the initial state is given in terms of two sets

* of sufficient statistics, satisfying stochastic differential equations [4]

Solved here is the state estimation problem which generalizes the above

result for the case of an arbitrary a priori distribution. The method applied

in this study is based on the derivation of an explicit formula for the condi-

tional characteristic function of the state, given the past and present

observations. This approach seems to impose less restrictive conditions on

the system structure than the methods based on the derivation of the

conditional distribution function. The latter can be found in [1] where the

filter is derived for a linear system with a priori distribution having a

well-defined density function.

It is shown here that the conditional characteristic function of the

present and past states, given the present and past observations, is para-

metrically determined by a finite number of sufficient statistics. This

result leads to the derivation of a filter, in the form of a finite set of

stochastic differential equations which extends the result of [1] in a similar I

manner as a conditionally Gaussian filter generalizes a Kalman filter.

Also discussed here and illustrated by the examples, is the suitability

of the filter structure for the study of stochastic control and parameter

estimation.

1. Problem Formulation and the Main Result

Given the following system of stochastic differential equations

o. "
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(1.1) dxt M (fo(t,y) + f (t,y)xt) dt + go(t,y)dwt + qo(t,y)dv

(1.2) dyt M (h0 (t,y) + hI(t,y)x t)dt + dvt , 0 4 t 4 T,

where f0,f1 ,g0,q0 ,h0 ,hl are the nonanticipative functionals of y (i.e., Yt

measurable with Yt M a - alg {Ys' 0 < s 4 ti), and wt, vt are independent

Wiener processes.

The objective is to find xt  E(x t /Y) , assuming that xt, Yt satisfy

(1.1) and (1.2), and that the conditional distribution of the initial states

F(a) - P(x0 4 alyo) is given.

The organization of this section starts with Lemma 1, whereby it is shown

that the conditional characteristic function of (xt0, X-, ... I xtn)IYt' for

an arbitrary decomposition 0 4 t0 < tI < ... < tn 4 t < T, of the interval

"O,T] is of a particular form. Results from the theory of conditionally

Gaussian processes are used here.

*q. Next, Lemma 2, the explicit formula for the characteristic function of

.xt Yt is derived, and finally, in Lemma 3, all the results are organized to

t.t

yield the recursive, finite-dimensional set of filter equations.

The assumptions used in the proof of Lemma 1 and 2 are listed below:

Let CT denote the space of continuous functions n {nt , 0 4 t 4 T). It

is assumed that for each n e Ct

T 1
(1.3) 0f ( k (jf,(t,n)J+Jht,(tn))+fgo(t,n)j2+Jqo(t,")I2) dt <-4'0 k-O

The above assumption assures the existence of the (Ito) integrals in

(1.1) and (1.2) [3]. In order to use the results for conditionally Gaussian

processes it is also assumed that [4]:

,..

JI'.
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(1.4) for all n Ct, t e [0,T], Ifl(t,n)l+l hl(t,n)I 4 const,

and

" " T

0 (1.5) T EI(x(t,y)14+lgo(t,y)04+lqo(t,y)11 4) < -
1.0

Lemma 1.

Let

zi

n
t exp(i I zkxtk), z = c R 0 t 0 < t1 < . < t n t < T

k-0
zn

Then the conditional characteristic function of (xt0, xtl , ... , xtn)(Y t is

given by

(1.6) et(z) K(tjYt) - f exp (Q(t,a,z,y)) dF(a)

where Q(t,a,z,y) is quadratic in the variables a and z.

Proof of Lemma 1

First notice that (1.1) solves as

t ti t
(1.7) xt  .t(x 0 + f *s (f0-q0h0 )ds + f q0 dys + f 07tg0dws)

0 0 0

t
where Ot exp ( f (fl - goh 1)ds).0

Rewrite (1.7) in the symbolic way as

(1.8) -t(xOW )
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Now, the following version of the Bayes formula will be used [2, p. 8]:

Let *t(xo,w,y) be a nonanticipative functional of its arguments with

B(lotl) < for all t e [0,T). Then

(1.9) E(tlYt) = I f Ot(a,n,y)pt(a, n,y)dw(rl)dF(a)

CT

where Uw is a Wiener measure in the measurable space of continuous functions n

on [0,T],

t I t

St(a,n,y) exp( f hl(*s(a,n,y) - Xs(y))dvs - f h (,(a,n,y) - Xsy)) 2 ds)
0 0

(1.10)

with dvs - dy s - (h 0 + h I X s)ds, and *s(a,n,y) defined by (1.8). The random

process vt can be represented by

t t
Vt f  (dys - (ho(sy) + hl(sy)xs(y))ds) - vt + f h1 (sy)(xs-x(y))ds " P0 0

*" Now using the Ito formula we have

I:
izv izv s  t izv A

t - e + iz f hl(T,y)e x (y))dT
S

t izv 2 t izv

iz f e Tdv- f e Td .
T 2

-s

i.j

.~~*.~ . - : r*-~ ----- K-- -*..- * .-. .-* . . , , , .. * . . . ...
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Multiplying both sides of the above equation by eS and taking the condi-

tional expectation 9(.1Y5 ) gives

iz(v,-V5  2 t iz( -V d

Solving the last equation yields

2
(1.11) iz(V-v V

X~e s TI e)

which shows that (vt,YT is a Wiener process.

Now rewrite pt(a,n,y) in a more convenient form. To this end introduce the

following notation:

A (t, Y) =hl ('tt f t*l (f0-q~h0)ds + f qdy) -t

A (t,y) - hl~

A (t,Y) D7* g

t 1

C 1(t,y) 0 f' A 1(s,y)dv9 s 0 1 Al(s,y)ds

t t
C (t,y) -f A (s,y)dv, f A (s,y)A (sy)ds

0 0

- 2 )112

C (t,y) (f A (s,y)ds)

t s t
C 4(t,y,w) A 2 A(s,y) f A 3 (,y)dw T dv - f A 1(s,y)A 2Cs,y) A 3 (',y)dw Tds

4..0 0 0 0

- .
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2 S
C (t,y,w) -- f A2(S,Y) f A3(s,y)dwds

50 0 W

Note also that C4(t,y,w) and C5(t~y~w) can be rewritten with the use of the

Ito formula by:

* .*...*t

C 4(t,y,w) w f A 4(t,s,y)dw
0S

C (t,v,w) - A 5 (r~)dw
0

where

t s
A 4(t's'y) -(f A 2(s,y)dv, f A 2(t,y) dvT)

0 0

t S

- f A 1(s,y)A 2(S,y)ds -f A1 (T,y)A 2 (,y)dr))A 3(s,y)
0 0

A5t's'y) 0 A 2 T,y)dT - 0fA 2 (s,y)ds)A3 (s,y)

Now, using the above notation we have from (1.8) and (1.10)

2 2

% t(~ ~) exp(C 1+ a(C 2-C5) + C-2 
3 2 A( 3Tds

expC a C3  f (aA5+ A4 )dw.- f A( f A dw)2 ds)
1 22 30 0 2(0 3T

(1.12)

The arguments in (1.12) were omitted for brevity.

From (1.8) it follows that



t8

t *tD(x 0,wpy) (D t (xO+ A 6(t,y) + f A3 (s,y)dw S

where

t t

exp(Q(t,a,z,y)) f 0 (an~~ (an~~d n
CT

22 n
-exp(C + aC -L a C+ a( I tkizk

1 2 2 3 k-I k

n t

+ 4tkA6(tkY)izk) f exp( f (aA 5+Adn
k-i C T 0

n t 1
+ z k i 0 $ f kA 3 d - T~ 2 A( f A 3d ri)

2d di n)
k=1 0 0 0

(1.13)

In order to evaluate the integral in (1.13) the following results will be

used:

Mi Since the above integral represents a conditional expected value of

its integrand, under the condition that YB, s e [0,t] and xO - a are

given, the resulting distributions are of conditionally Gaussian

type [4]. Note that this fact does not depend on the F(a).

(ii) With all the variables in (1.13) being conditionally Gaussian we can

P use a convenient theorem:

V.~
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Theorem [4, pp. 12-13]

Let wt, t c [0,T] be a Wiener process and let R(t), G(t), and H(t) o 0 be

such that

T 2 P

f (IR(t)I + G(t) + H(t))dt <
0

."

Then for all t e [0,T]

t t s
(1.14) E(exp( f R(s)G(s)dw - f 1(s)( f G(T)dw 2 ds)

S T
0 0 0

exp( D(t) +1 f G(s)2 r(s)ds)
0

2 2where dr(s) (2H(s)- r(s) G(s) )ds , r(t)= 0

t
and D(t) is the covariance of f R(s)ds, where

0

ds G(s) 2(s).sds + G(s)dw 0 = 0

Comparing the last integral in (1.13) with the equation given by (1.14),

we note that the corresponding R(t) is a linear function of a and z. Now

(1.9), (1.13), (1.14), and the definition of D(t) conclude the proof of

Lemma 1.

From Lemma 1 it follows in particular that for z e R, the characteristic

function of xtiYt is given by

Si.

5..q

J.q
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(1.15) e~ (z) =C(t,v) f exp(a F (t,y) + aF (t,v) + izaF (t,v) + izF (t'v)

.2..+ z-F5 (t,y))dF(a)

where Fl. F2, F3 9 F4, F5 do not depend on F(a). Normalizing et(z) (i.e.,

requiring that et(O) =1) yields

(1.1) e z) ep~iF + 2 F -cof exp~a F 1+a(F 2+izF 3 )dF(a)

fx~z z 5  exp(a F 1+aF 2 dF(a)

Then from the general properties of the characteristic function, it fo WS

that

1 de~ (z)j

i dz: z 0=X

1 2 d 2e t(z) ;

dz t-

where ?t =E(Cxt - x)t2 Yt) i.e., the conditional variance of xlt

From the above and (1.16)

(1.17) -t F 1 (1) + F4

(1.18) Pt -2F5 + vF (1 (2) 1 I(1))

where

faexp(a F 1+aF 2 )dF(a)

(119 (n) 0 n =1,2

fexp(a F + aF )dF(a)

The following Lemma defines F 1 = 1,2,3,4,5 in (1.16).



Lemma 2

The characteristic function of xtjYt is given by

fexp(a2F +aF +izx (a,o) )dF(a)
(1.20) e,) W exp( - z Pt(o)3 ) ex- F+F-Fa

where i(a,0), P (0) are given as the solutions to the following set of dif-

ferential equations with a =0:

*(1.21) dx~ (a,a) (f +f x (a,ar))dt + (q0+ Pt(a)h13(dyt-(h 0 + hlxt (a,O)dtJ

x (a,a) =a

(1.22) d t I) g0+ q0-(q0+ Ptja)h 1 )
2 )dt ,P(a) a 2

and

(1.23) Fl f t- h 22 ds

t
(1.24) 2 F *h,(dv+ ho1 j(l)ds)

J t
*(1.25) -exp( f (fl- hl(q 0+ s (0)hlJ)ds)

0

Proof of Lemma 2

Since the Fi do not depend on F(a) (see Lemma 1) take

(1.26) dF(a) - exp(- (aan)2  , a, ar > 0
V27ra 2
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In this case the resulting conditionally Gaussian distribution allows for

explicit et(z) calculation [4] . Accordingly,

-1 2-
(1.27) e(z) =exp(izxt (m,a) -T z Pt(O)

where R ma and Istja) satisfy (1.21) and (1.22) respectively. With F(a)

given by (1.26) it follows from (1.16) that

(1.28) et(z) =exp(iz(F 4  a 2 + 2 .)F3) z z( 5- 2~ a2F3)

*-2 =-2
where a a 2F 1.

Comparing (1.27) and (1.28), we have

(1.29) x t(m,c) F F4+ a(F 2 +-2F 3

* and

(1.30) P (a) a2 2 3 2F5

Letting now a .0 in (1.29) and (1.30), it follows that

(1.31) F mF3  xt(m,O)

and

*(1.32) F (0-

5 2
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-~ The above allows et(z) to be of the form of (1.20) with P1 and F2 yet to be

def ined. Using now (1.17) and (1.18) and explicitly calculating I (n),

Sn= 1,2,

(1.33) A C-2 2F1) F
t F3

and

t (1.34)- ~ 2) =F 3 (xt 4 F)

with At P 0

* The formulae for F, and F2 will be obtained by differentiating (1.33) and

(1.34). However, before this is done recall from the theory of nonlinear

* filtering [31 that in general for xt, yt given as a solution to (1.1) and

*(1.2) xt, Pt satisfy

*(1.35) dxt =(f 0 + f 1xt)dt + (qO + Pth, )dvt , = f adF(a)

2 2 2 - 2
dPt (2 + g 0 + q 0  (q 0 +' P th1 ) )dt + h 1R tdv~ t P 0 = f (a-x0J dF(a)

(1.36)

where Rt = (( - t t
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*Remark. Direct application of Eqs. (1.35) and (1.36) meets the difficulty of

infinite coupling between the subsequent moments.

" From Eqs. (1.22), (1.35), and (1.36), and the fact that for conditionally

Gaussian processes Rt - 0,

(1.37) dAt At(2f 1 - hl(2q0 + hj(P t + Pt(0))))dt , A0 - a2

Now from (1.33) and (1.34) (upon differentiation) and using (1.35), (1.37) it

follows that

I h 2 2 d 0
(1.38) dF f- hl F3 dt, F(0)= 0,

and

(1.39) dF2 = F3 h(dv t + hIF 3 1t(1)dt) , F2(0) = 0

To define F3 , notice that Eq. (1.21) solves as

_t t

x (a,q) t(a + f (f ho(qo + (a)hl))ds + f ,l(q0+ Ps(a)hj)dy s )
0 0

(1.40)

where

t
(1.41) t exp( f (fl-hl(q 0+ Ps(o)hl))ds

0

Comparing the above with (1.31) shows that F3 -t for a - 0, which ends the

proof of Lemma 2.

'"



Lemma 3 below merely organizes all the results into the filter equations

and the final form of the conditional characteristic function.

Lemma 3

Given the system (1.1) and (1.2) together with the a priori distribution

F(a) - P(xo < amy 0 ). The following are the filter equations (i.e., formulae

-' of the recursive type, which calculate t = E(xtlYt)).

i S.,,

(1.42) dx - (fO+ flxt)dt + (qo+ Pthi)dvt , X0  f adF(a)

(1.43) dvt dyt - (h0 + hlxt)dt

2 2

(1.44) p + - tIt2 --tl

(1.45) dPt = (2fi~t + go + q0 - (q0 + Pthl 
2 )dt P0 - 0

• -f F1  aF2)dF(a)

(1.46) -(n) f aexp(a1 , n 1,2,

f exp(a 1 + aF2 )dF(a)

(1.47) dF1  1h 2 dt (0) 0

~ 1~t I 1 0

(1.48) dF2 - *thl(dvt + *thIlt(1)dt) F2 (0) -0

(1.49) dt -(f h-(q- + fth l ))Ot dt , - 1

-°

The characteristic function of xtlYt is given by:

gieSA
i:: **

°S "°
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02
I exp(a 2 Fl+a(F 2 +izt))dF(a)

et(z) - exp(iz[xt - *tIt()) 2-

f exp(a2F1+aF2 )dF(a)

(1.50)

2. Control and Special Cases

Two special cases of Eqs. (1.1) and (1.2) result in significant simplifi-

Vcation of the filter equations. The first case occurs when g0 (t,y) = 0,

0 4 t 4 T. From (1.7) it follows then that x t is of the form

xt = A (y)x + B(y)

Using the above equation in (1.2) we have the following estimation problem:

Let x0 be a random variable with distribution F(a) = P(x0 < alyo). Assume

that the observation process Yt, 0 4 t 4 T, admits a differential

dyt - (ho(t,y) + hl(t,y)x0 )dt + dvt

where the notation stays the same as in (1.2) and ho, h, satisfy (1.3) and

(1 .4).

From Lemma 2 it follows now that the conditional characteristic function of x0

given Yt is of the form
tm

f exp(a2F1 + aF2 + iza)dF(a)

(2.1) et(z) - -

f exp(a2FI + aF2 )dF(a)

The above results from the fact that dx0 - 0 replaces Eq. (1.1) implying

Pt() 0 and it(a,O) - a, as defined by Eqs. (1.21) and (1.22). Now

de(z) i x t

dz z-0

S.*
.,.
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where xt - (xolyt), combined with the general filter equations (1.42) +

(1.50) yields
' ,t t

-"f a exp(- -L a 2 fh2 yf h I (dYs-hods))dF(a)
2(2.2) x0 0(2.2). -t f exp(- l a 2 f hl ds+a f h I (dys-hods))dF(a)

2* 0 1 0

In particular if dF(a) - 1 exp(- .- (a - mo)2 )da, (2.2) results in

0
t

m0 + 200 f hI(dys - h0ds)

(2.3) xt  1 0
+ a2 of h 2dS

The above agrees with the result presented in [4, pp. 22-24].

The second special case for which the filter takes a simple form follows

if hl(t,y) - 0 (i.e., the state is not observable directly), 0 < t < T. Now

the filter equations (1.42) + (1.50) reduce to

dxt (f0 
+ fIxt)dt + qo(dYt h 0 dt)

A

(2.4) x0 - f adF(a) P

SdPt -(2fP t + g2)dt

PO f xO)2 dF(a)

V.

,V ; ' , v , . , , . . . . . - .+ ; - -. .--+ .. . . . . - .. . . . .. -. . -. . -. . . . . . . - .. . . . . . . ..v - .. . .. .- , , . , . , -
jI . . - -Y -Y " + I L -' " " " ".+' x" + ',+'_*% ' * "t ~ + +'..r. i , -,



, - -.. .. ", . .. . . .- . , , . . . - - . . - . -. , , ., , - - . . . , . . . . .,, . . . 7, J . . . ..

18

In order to discuss a control problem using the results obtained here, assume

that all the coefficients in (1.1) and (1.2), except fo(t,y) which is denoted

here by ut(y), are functions of time only. If ut(Y) satisfies the assumption

(1.5) we say that u - {ut(y), 0 4 t ( T} is an admissible control and write

U C U.

Let xu, xu denote the solutions to (1.1) nad (1.42) respectively, for

same u e U, and let x, x0 correspond to ut  0, 0 t T.
some ~t' t0,0<t T

Define et= x - xt, eu = x0 -X 0 = e0 , et = 0- x0. Substracting Eq.

(1.42) from (1.1) we have

(2.5) deU fleudt + g dv + q _dvt - (q0 + Pt(eU)hlj(hlet + dvt)e t  g0dwt q0dv

where Pt Pt(eu) shows that Pt depends only on es, 0 4 s 4 t which is seen

from Eq. (1.48) rewritten as:

(2.6) dF2  *thl (eUhldt + dvt + *thlIt(1))dt

From (2.5) it follows that with probability one the values of eu and et

coincide for all u e U. Now, since

(2.7) dv ' dy - (ho+ hx)dt- he dt + dvt he dt + dvt dvt

"u and vo coincide with probability one. From (2.7) it follows that Sq.

(1.42) can be rewritten as

(2.8) du (f Ix+ ut)dt + (qo+ hlPt(et))dv 0  
0 - f adF(a)

Now let ut M Ft(xu), where Ft is a nonanticipative functional of x.,

0 4 s 4 t, and satisfies

*- -'-**'.-*'-',"."* .. ** .--.. ;.-. ....... . ..
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T

(2.9) E( f IF 14dt) <

0

From (2.8) it follows that U is a O 0 4 s < t} measurable. Now, letFrm(.8 tfllw h t is t-l~s
u

be any admissible control and let yt be an observation Process associated with

ut. From (2.7),

Tu , a-alglyu, 0 4 s 4 tD a-algl1
u , 0 < s 1 tj =a-algivo, 0 4 s 4 t.

(2.10)

The above shows that u is Yu measurable. This fact combined with (2.9)
t t

states that u e U, and that we can expect the separation of the stochastic

control of ut type and the filtering problem. As an illustration of the

statement, consider the following control problem.

Linear-Quadratic Control Problem with Non-Gaussian Initial Distributions

The partially observable controlled process (xt,Yt), 0 4 t 4 T, is given

by the stochastic equations

(2.11) dxt - (fl(t)x t + ut)dt + go(t)dwt,

dyt - hl(t)xtdt + dvt yo - 0

The independent Wiener processes w t and vt entering into (2.11) do not depend

on the random variable x0 (the initial state). x0 is assumed to have distri-

bution function F(a) - P(x0 C a) with f a4dF(a) < * (finite fourth order

moment).

.

#1*.d , .4. ",L, ; :"2. 'I " ..e ","-, .. -. ." '." " - ;,- -.-. . . . . . .. ...... . ..
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The t = a-alg{ys, 0 < s < t} measurable, stochastic process ut is called

a control at time t and is assumed to satisfy

T
E( f Iut4d) <

"-' 0

For u - {ut, 0 < t 4 T}, satisfying the above we write u E U, where U is the

class of admissible controls. It is also assumed that f1, g0, h, satisfy the

deterministic version of (1.3) + (1.5).

Consider now the performance functional

T+ f (x
- (2.12) J~u) - ~~T +4 uRt)t

0

where hT > 0, H(t) ) 0, 0 R-1 (t) < const., 0 4 t < T. The admissible con-

-. trol u c U is called optimal if

J(u) - inf J(u)

U EU

.. Lemma

The optimal control for the process (2.11) and the performance index

(2.12) exists and is defined by

(2.13) ut -- R (t)Q(t)x , 0 e t < T

"- where Q(t) >0 satisfies the Riccati equation

(2.14) dQ(t) . 2f (t)Q(t) + H(t) - 2 (t)R-1 (t) Q(T) = h
dt 1 T

and xt is defined by

_'' '', ;... ,', : v , '. .L ''..*' ".*.. . ; . - '- ."' ''_ . * ' ; ,,- . '' " *' *...'' ".' %*'' ' , -'-', . . . , " . , " . "-' '.", -
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(2.15) dxt -(fl(t - R- (t)Q(t))xtdt + Pt(v)hl(t)dvt

K f adF (a)

dv - dy - h 1tWx tdt

Pt P~t)+ O ~)(t ) h 1 )P

0(t exp( f (f C () -h 1(s)P(s))ds
0

tI
1~ t 2 2

F (t) f h 1 () COO ds
0

t
F2(t,v) 0 (-,()(v + 0(t)h 1(t)It(1)dt)

faexp(a F 1(t) + aF 2Ct,v))dF(a)

(ni) -,n =1,2

f exp(a 2 F1(t) + aF 2(t,v))dF(a)p

*Remark. The structure of the optimal control law is identical with the opti-

mal controller for LQG problem.

* Proof of the Lemma

First note that the assumnptions made in the control problem statement

assure well-defined filter for the system (2.11) and u e U. Next rewrite the

performance index as follows:



-. * * , . . .~* .7. -
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2 T

(2.16) J(u) I(E(xhTIYT) + f E(x 2H(t) + u2 R(t)lYt)dt )
0

A2 ~T2(x;)hT + 0 f+ uttR(t))dt)

0
T

00
+ KhTP + f PUH(t)dt)

From (2.6) we conclude that Pu does not depend on the control u and coincides

with the function Po obtained from the filter equations for ut = 0, 0 4 t 4 T.
.U

The process xt entering (2.15) satisfies equation (see 2.8)

(2.17) dxu = (fl(t)xu + ut)dt + hl(t)Pdv 0

tOA
0 U 1 U

where vt = (dy h(s)uds), according to (2.7), and vo is a Wiener

process (see (1.11)). Introduce now the function

(2.18) V(t,&) g 2 Q(t) + f Q(T)h2(T)(P°) 2d
t

where 0 4 t < T, -,< < -, and Q(t) satisfies (2.14). It is easy to verify

that V(t,&) satisfies the following Bellman equation:

(2.19) 2H(t) + &fl(t) av(t. ) + p 2t2 2V(t) + av(tc)

~1~ 2 t t) 1(t 2 at

+ min(n2R(t) + n __t__) = 0
n

and that V(T,g) E 2hT.

Note that n which minimizes the above for positive definite R(t), is given by

(2.20) n - -R-(t)Q(t).

a
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Calculate now, with the use of the Ito formula,

V(T~xu) - =' +-Ih ()(O

'T 0 a t lcxu 2 1u
t ~=t

av(t,E) I dU)
+ a --u t-'

Taking into account (2.8) and (2.19) we obtain

V(T,Xf V(O,x 0 ) - T ((;u)2 H(t) + u2 R(t) )dt
t0 t

+ 2 f XuQ(t)Ph (t)do'
0 tit

After taking the expectation of both sides of the above inequality,

(2.21) V(O,x0) <E((xT) 2 hT + (;u)2H(t) +uR(t))dt)
0

The equality in (2.21) holds, according to (2.20) only if

* e -1 ^u

*(2.22) Ut =-R (t)Q(t) x~

*Comparing (2.22) with (2.16),

JGi) 4 J(u) for all u cU.

The admissibility of u defined by (2.22) follows from (2.10) and the fact that

* . (sup (x 4~ <

0 -c t < T

, ,The above can be proven in the same way as in the derivation of a conditional-

ly Gaussian filter [Lemma 12.1; 4, pp. 18-19]. This ends the proof of the

3.pI Lemma.
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It seems to be possible, (following e.g. (21) to show that the separation

principle holds also for nonquadratic performance functionals.
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